

RELATIONS BETWEEN SLEEP COMPOSITIONS AND PHYSICAL ACTIVITY IN EARLY CHILDHOOD

Christine W. St. Laurent¹, Tracy Riggins², Sanna Lokhandwala¹, and Rebecca M.C. Spencer¹

¹Psychological and Brain Sciences, University of Massachusetts Amherst; ²Department of Psychology, University of Maryland College Park

SOCIETY OF BEHAVIORAL MEDICINE

Sleep and Physical Activity

Physical activity (PA) is favorably associated with sleep in adults and adolescents (Chennaoui et al., 2015; Dolezal et al., 2017; Kredlow et al., 2015; Rubio-Arias et al., 2017)

Studies in children report inconsistent associations & components of sleep and PA are studied independently (Antczak et al., 2020; Chaput et al., 2017; Janssen et al., 2020)

Relations in preschoolers primarily focused on PA \rightarrow sleep (Antczak et al., 2020; St. Laurent et al., 2021)

University of Massachusetts Amherst

Sleep \rightarrow Physical Activity

Limited observational studies in early childhood exploring PA as outcome \rightarrow mixed results (St. Laurent et al., 2021)

Daily association studies → some within-person associations (St. Laurent et al., 2022a; St. Laurent et al., 2022b)

Sleep physiology (e.g., N3 sleep) could influence PA levels, but scarcely explored in preschoolers (St. Laurent et al.; 2022c)

Compositional Data Analysis

A compositional data analysis (CoDA) approach can explore behaviors of the 24-hr cycle while accounting for co-dependence (Chastin et al., 2015; Dumuid et al. 2018; Dumuid et al., 2019)

Application of CoDA in early childhood:

- Limited
- Compositions typically focused on daytime measures
- Time in bed often a proxy of sleep time
- Other sleep subcomponents not considered

Sleep Compositions (Actigraphy)

Sleep Compositions (Polysomnography)

University of Massachusetts Amherst

College of Natural Sciences/Psychological and Brain Sciences | Page 7

Purpose

To determine if sleep compositions are associated with overall activity and if so, how theoretical time reallocations would influence PA levels

Question 1: Are actigraphy-measured overnight sleep compositions associated with PA in preschool children?

Question 2: Are PSG-measured nap sleep stages associated with PA in preschool children?

Methods

Participants

Preschool children (~3 to 5 years)

No psychotropic or sleep-effecting medications, history of neurological injury, or diagnosed developmental or sleep disorder

Minimum of 3 days & nights of actigraphy

Physical Activity

- Wrist-worn Actiwatch Spectrum devices
- Actigraphy-measured activity counts during daytime wake intervals (10.7 ± 3.6 days)
- PA = Mean counts/min

University of Massachusetts Amherst

Overnight Sleep Composition

- Actigraphy-measured overnight sleep from full sample (9.6 ± 3.7 nights)
- Composition:
 - Sleep onset latency (SOL)
 - Sleep duration
 - Wake after sleep onset (WASO)

University of Massachusetts Amherst

Nap Sleep Composition

- Ambulatory PSG (Embletta MRP: montage with 6 EEG, 2 EOG, 2 EMG)
- Composition:
 - SOL
 - REM sleep
 - N1 sleep
 - N2 sleep
 - N3 sleep
 - WASO

Image from Figure 1 of Allard et al., J Vis Exp, 2021

Converting the Compositions

- Expressing composition as ratios of its parts
 - Absolute values \rightarrow isometric-log ratio (ILR) coordinates
 - # of ILRs = # of component 1

From Dumuid et al., 2019, Statistical Methods in Medical Research 28(3)

Analysis

Two linear regression models:

- Outcome = PA
- IV = nap or overnight sleep composition •
- Adjusted for age and sex (overnight only) •

Sleep metrics:

University of Massachusetts

Amherst

- Used simple replacement for zero values ۲
- Transformed into isometric-log ratios (ILR) for the compositions

Isotemporal substitution:

Estimate effects of time reallocations between sleep metrics on PA

Article

The compositional isotemporal substitution model: A method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour 2019, Vol. 28(3) 846-857 C) The Author(s) 2017 Article reuse guidelines: agepub.com/journals-permissions DOI: 10.1177/0962280217737805 ournals.sagepub.com/home/smm

statistical Methods in Medical Resear

Dorothea Dumuid,¹ Željko Pedišić,² Tyman Everleigh Stanford,^{3,4} Josep-Antoni Martín-Fernández,⁵ Karel Hron,⁶ Carol A Maher,¹ Lucy K Lewis⁷ and Timothy Olds¹

van den Boogaart, K.G.; Tolosana-Delgado, R. "Compositions": A unified R package to analyze compositional data. Comput. Geosci. 2008, 34, 320-338.

The codaredistlm (formally deltacomp) R package: https://github.com/tystan/codaredistlm

(S)SAGE

Results

Participant Characteristics (Full Sample)

N = 432	Mean (SD) or % (n)	Overnig	Overnight Sleep Composition			
Age (years)	4.3 (0.7)	((geometric means)			
Sex (% female)	45.6 (197)		%	min*		
Race (% White)	66.8 (265)	SOL	1.5	8.8 532.2 51.0		
Hispanic (%)	25.4 (103)					
Nap frequency (days/week)	3.6 (2.0)	duration	89.9			
Days (#)	9.8 (3.3)					
Nights (#)	10.4 (3.7)	WASO	8.6			

*Based on mean time in bed of 592 min

Overnight Sleep Metrics & Physical Activity

+	Comp.	Comp. Δ 95% CI		
5 min	Sleep	-5.4	-8.6 to -2.2	
5 min	WASO	4.9	1.6 to 8.1	
10 min	Sleep	-11.2	-17.8 to -4.7	
10 min	WASO	9.4	3.1 to 15.7	

Participant Characteristics (Sub-Sample)

N = 44	Mean (SD) or % (n)	Nap Sleep	Nap Sleep Composition			
			%	min*		
Age (years)	4.2 (0.6)	SOL	11.7	14.6		
Sov (% fomale)	E 4 E (24)	N1	5.9	7.3		
Sex (% lemale)	54.5 (24)	N2	26.0	32.5		
Race (% White)	73.7 (28)	N3	40.3	50.4		
		REM	0.1	0.2		
Hispanic (%)	8.1 (3)	WASO	16.0	20.0		

*Based on mean nap time in bed of 125 min

Nap Sleep Stages & Physical Activity

Participants with REM included (n = 9)				Participants with REM excluded					
(using zero replacement)					Sum Sa	Df	F	P-value	
	Sum Sq	Df	F	P-value		, , , , , , , , , , , , , , , , , , ,			
					ilr comp	42,957	4	0.8492	0.5062
ilr comp	32,588	5	0.5462	0.7400		4.050	4	0.0040	
					age	4,859	1	0.3842	0.5404
age	6,979	1	0.5848	0.4499	COV		1	2 0026	
60%	22 240	1	2 7100	0 1002	Sex	55,455	Ţ	2.0030	0.1052
Sex	52,549	Т	2.7108	0.1092					

Nap Sleep Stages & Physical Activity

Conclusions & Future Directions

Conclusions

Conclusions

Considerations and Future Directions

Limitations

- Generally healthy samples
- PSG sub-sample lacked diversity in race/ethnicity & SES
- Misclassification of measures
- Cross-sectional design

Next Steps

- Health 'diverse' populations
- Examine 24-hr sleep compositions
- Stratify by nap habituality
- Consider other indicators of PA

Contributions & Acknowledgements

University of Massachusetts Amherst

- Dr. Rebecca Spencer, Jen Holmes, Sanna Lokhandwala, Dr. Gina Mason, Katrina Rodheim, Chloe Andre
- Previous and current members of the Somneuro Lab, & the many children & families that have participated in our studies!

University of Maryland College Park

- Dr. Tracy Riggins, Tamara Allard, Angela Li
- Members of the Neurocognitive Development Lab

Funding

• NIH R01 HL111695; NIH R21 HD094758; NSF 1749280; NIH F32 HD105384

Thank You and Questions

